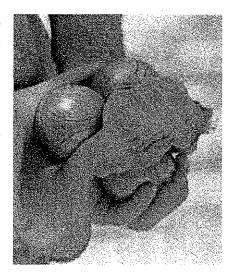


Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>


Sous-épreuve commune aux deux options : Sciences et Techniques Industrielles

C'est en 1927, à St-Bonnet le Château que fut créée la première boule d'acier qui devait remplacer son ancêtre en buis clouté. L'idée en revint à Jean Blanc qui, avec son ami Louis Tarchier, fabriqua les premières boules « lyonnaises » en acier, puis celles de pétanque.

La fabrication d'une boule d'acier creuse, d'aspect relativement banal, demande un savoir-faire, une technicité et un équipement matériel sophistiqué et coûteux.

Deux types de jeux sont possibles :

- les boules de loisir, régie par la norme NF S 52-200.
- les boules de compétition homologuées par la F.I.P.J.P. et la F.F.P.J.P.

Le cahier des charges techniques (F.F.P.J.P.) des boules de compétition impose :

- Un diamètre compris entre 70,5 et 80mm.
- Un poids compris entre 650 et 800 grammes.
- Une dureté supérieure à 35HRC.
- Un équilibrage contrôlé.
- Des inscriptions impératives : marque, label, poids, numéro.

Plus une boule est « dure », plus elle rebondit sur le sol ou en frappant une autre boule. Plus une boule est « tendre », plus elle absorbe les ondes de chocs.

Une boule de pétanque « tendre » permet donc :

- au pointeur, de pouvoir porter la boule plus loin et de plomber avec plus d'efficacité.
- au tireur, d'atténuer le phénomène "kangourou" (boule qui saute) et ainsi favoriser les palais et carreaux.

Les classes de dureté sont réparties de la manière suivante :

- $35 \, \text{HRC}$ = tendre
- 36/37 HRC = mi-tendre
- 40 HRC = mi-dure
- 44/45 HRC = dure

La boule « tendre » est celle que l'on rencontre le plus lors des compétitions officielles. Cependant, une boule mi-tendre convient le mieux pour « tout faire ».

Deux types d'aciers peuvent être utilisés :

- l'acier au carbone, protégé par traitement de surface approprié (zingage, nickelage, chromage noir, brillant ou satiné...) nécessitant un entretien régulier.
- l'acier inoxydable, qui n'est pas sujet à la corrosion et ne nécessite pas d'entretien.

BREVET DE TECHNICIEN SUPERIEUR – TRAITEMENTS DES MATERIAUX							
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006				
Code: TN	ISTI AB	Sous-épreuve commune aux deux options – U4.2	Page 2/10				

Etude de la fabrication des boules de pétanques

L'entreprise X, produisant 300 tonnes de boules de pétanques par mois, cherche à réaliser des boules « mi-tendres » en 25CrMo4 soudable revêtues d'un chrome décoratif.

La gamme de fabrication est détaillée en annexe 1.

Le cahier des charges à respecter est le suivant :

• Diamètre des boules : 74 mm

• Poids: 720 grammes

Dureté: 36/37 HRC (mi-tendre)
 Résilience: KCU > 7 daJ.cm⁻²

1. Etude du matériau

- 1.1. Décoder la désignation de la nuance d'acier choisi.
- 1.2. Indiquer le caractère et l'influence des éléments d'addition.

2. Essais mécaniques

- 2.1. Citer les différents types d'éprouvettes normalisées utilisées pour l'essai de résilience.
- 2.2. Le cahier des charges préconise une valeur minimale de résilience. A partir de l'unité utilisée, indiquer s'il s'agit de l'ancienne ou de la nouvelle norme en vigueur. Donner la valeur de la résilience minimale dans l'autre norme si l'on utilise une éprouvette dont la section au droit de l'entaille vaut 0,5cm².
- 2.3. On utilise un mouton de 300 J \pm 10 J. Après essai, l'énergie absorbée relevée sur une éprouvette de même type qu'à la question précédente, est de 36J. Exprimer sous sa forme normalisée actuelle le résultat de l'essai de résilience.
- 2.4. Le cahier des charges préconise une dureté de 36/37 HRC. Indiquer le principe de l'essai HRC (un schéma peut être utilisé si nécessaire). Quelle sont les charges mises en jeu ?

3. Etude des traitements thermiques

3.1. L'acier choisi est livré à l'état globulisé. Dans quel but ?

Afin de simplifier votre démarche, les boules de pétanque à traiter seront assimilées à des cylindres de diamètre 5mm.

- 3.2. Sur la courbe TRC de l'annexe 2, surligner la loi critique de trempe martensitique. Donner la dureté la plus proche et calculer la durée précise du refroidissement jusqu'à la température de 100°C.
- 3.3. A partir de la durée relevée en question 3.2. et de l'annexe 3, choisir le mode de refroidissement capable de réaliser la trempe de la pièce dans les conditions optimales.
- 3.4. A l'aide des annexes 4 et 5, définir la température de revenu permettant de respecter le cahier des charges.
- 3.5. Schématiser le cycle récapitulatif **complet** (trempe-revenu) du traitement subi par les boules de pétanques. Indiquer les températures choisies, les temps de traitements et les modes de refroidissement.

BREVE	ET DE TECHNICO	<u>EN SUPERIEUR – TRAITEMENTS DES MATERIA</u>	UX
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TN	ASTI AB	Sous-épreuve commune aux deux options – U4.2	Page 3/10

Sous-épreuve commune aux deux options : Sciences et Techniques Industrielles

- 3.6. Après trempe, le contrôle de dureté d'une série de pièces révèle une dureté de 23 HRC. Indiquer la quantité de constituants présents à l'aide de l'annexe 2 et donner une explication à ce phénomène.
- 3.7. Sur une autre série, suite à un blocage de la porte du four d'austénistisation avant trempe, il s'avère que les pièces ont subi un grossissement exagéré du grain. Quelle est l'influence de ce grossissement du grain sur les caractéristiques mécaniques, la structure et le diagramme TRC? Proposer et justifier un remède permettant de récupérer l'état métallurgique des pièces et de respecter le cahier des charges.

4. Etude des traitements de surfaces

Les boules de pétanques étudiées doivent être revêtues d'un chrome décoratif (préparation de la surface \rightarrow nickelage \rightarrow rinçage cascade \rightarrow chromage décoratif \rightarrow rinçage mort). L'acier est considéré comme un acier non fragilisable et la gamme de préparation est identique à celle d'un zingage sur acier doux.

- 4.1. Décrire le principe de dépôts par voie électrolytique.
- 4.2. Décoder la désignation normalisée de ce traitement : Cr 0,5(I) + Ni 20 b(I) / Fe
- 4.3. Etablir la liste et ordonner les différentes opérations de la gamme de préparation de la surface.

Le bain de nickel fonctionne dans les conditions suivantes :

• Densité de courant : 8 A/dm²

• Rendement cathodique: 97 %

• Valence: 2

- 4.4. Calculer, à l'aide de l'annexe 6 et de la loi de Faraday, la vitesse de déposition de ce bain en μm/min en justifiant vos calculs.
- 4.5. Calculer le temps d'électrolyse de ce nickelage en minutes et secondes sachant que l'épaisseur de nickel à déposer est de 20 μm.

Le bain de chrome fonctionne dans les conditions suivantes :

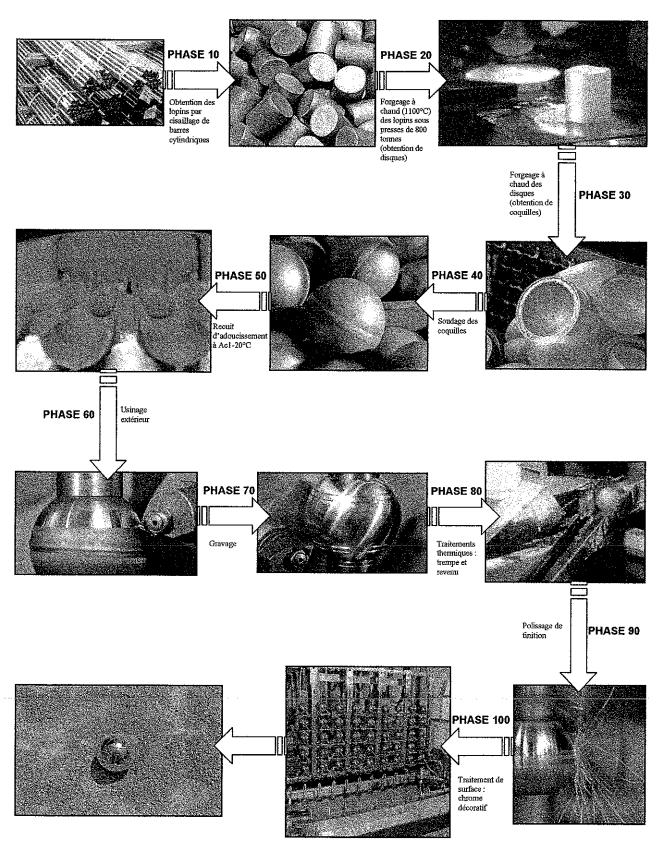
Densité de courant : 18 A/dm²

• Rendement cathodique: 17 %

• Valence: 6

4.6. Calculer le temps d'électrolyse du dépôt de chrome en minutes et secondes sachant que l'épaisseur à déposer est de 0,5µm.

Afin d'analyser l'état de fonctionnement du bain de nickel, une boule de pétanque est traitée sans prise en compte du rendement pour le calcul du temps de traitement. Soit le volume d'une sphère V=4/3. π . R^3 :


- R avant dépôt de nickel = 36,975mm
- R après dépôt de nickel = 36,995mm
- 4.7. Après avoir calculer la masse théorique de nickel à déposer, déterminer le rendement du bain sachant que la masse réelle du dépôt est de 2,9 grammes.

BAREME

					A 6956				Ques	tions									
1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2	3.3	3.4	3.5	3.6	3.7	4.1	4.2	4.3	4.4	4.5	4.6	4.7
1	1	0,5	1	. 1	1,5	0,5	1	0,5	1	1,5	1,5	1	0,5	1	1,5	1,5	0,5	1	1

BREVE	ET DE TECHNICI	EN SUPERIEUR – TRAITEMENTS DES MATERIA	UX
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TN	ASTI AB	Sous-épreuve commune aux deux options – U4.2	Page 4/10

ANNEXE 1 Gamme de fabrication des boules de pétanques

BREVI	ET DE TECHNICI	EN SUPERIEUR – TRAITEMENTS DES MATERIA	AUX
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TN	MSTI AB	Sous-épreuve commune aux deux options – U4.2	Page 5/10

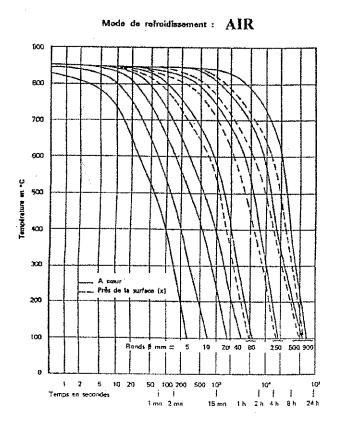
ANNEXE 2 (A RENDRE AVEC LA COPIE)

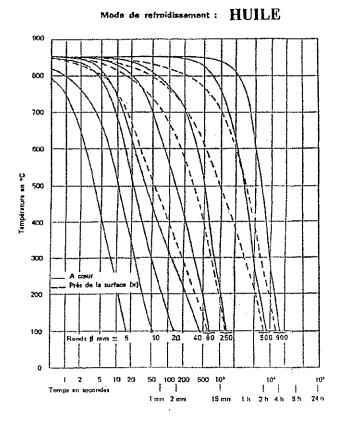
25 Cr Mo 4

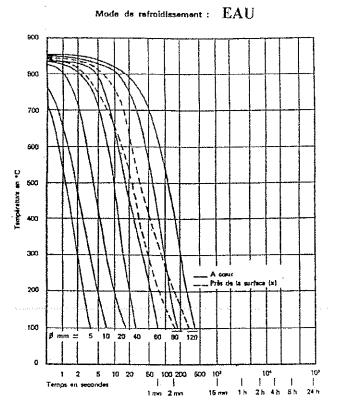
C %	Mn %	Si %	S %	Р%	Ni %	Cr%	Mo%	Cu %
0,25	0,68	0,21	0,090	0,018	0,19	1,10	0,22	0,16

Austénitisé à 900 °C 30 mn

Grosseur du grain : 7-9

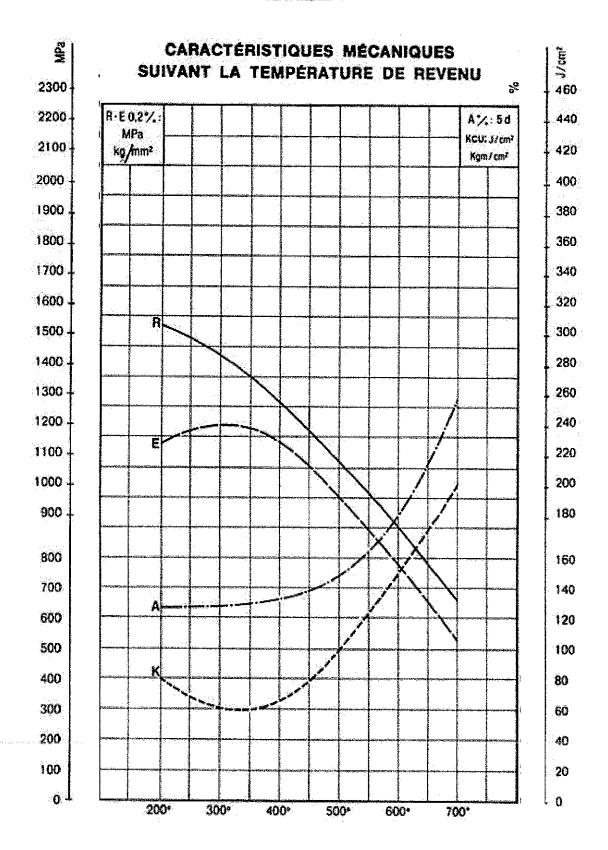



N° candidat:


BREVE	ET DE TECHNICI	EN SUPERIEUR – TRAITEMENTS DES MATERIA	AUX
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TN	ASTI AB	Sous-épreuve commune aux deux options – U4.2	Page 6/10

Sous-épreuve commune aux deux options : Sciences et Techniques Industrielles

ANNEXE 3



Evolution de la température en fonction du temps pour un type de refroidissement.

(x) 80 mm : à 10 mm de la surface 2 250 et 500 mm : à 20 mm de la surface 2 900 mm : à R/3 (150 mm) de la surface

BREVE	ET DE TECHNICI	EN SUPERIEUR – TRAITEMENTS DES MATERIA	UX
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TN	ASTI AB	Sous-épreuve commune aux deux options – U4.2	Page 7/10

ANNEXE 4

BREVE	T DE TECHNICI	EN SUPERIEUR – TRAITEMENTS DES MATERIA	UX
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TN	ASTI AB	Sous-épreuve commune aux deux options – U4.2	Page 8/10

ANNEXE 5
TABLEAU D'EQUIVALENCE DE DURETE

HV30	HBS HBW	HRB	HRG	Rm MPa	HV30	HBS HBW	HRB.	HRC	Rm MPa	HV30	HRC
90	76	<u>. </u> 36	<u> </u>	270	280	266	la essas	27	890	660	58,5
80 85	76 81	42		270 310	285	271		28	910	670	59,0
90	85	47		320	290	276		28,5	930	680	59,2
95	90	52		340	295	280		20,5	940	690	59,7
100	95	56		350	300	285		30	960	700	60
105	100	60		370	310	295		. 31	990	720	61
110	105	62		380	320	304		32	1020	740	62
115	109	65		390	330	314		33	1060	760	62,5
120	114	67		410	340	323	54 T 15 T	34	1090	780	63
125	119	69	ce domaine	420	350	333		35,5	1120	800	64
130	124	71	Ü	440	360	342		36,5	1160	820	64,5
135	128	73		450	370	352		38	1190	840	65
140	133	75	-	470	380	361	m	39	1220	860	66
145	138	77	O .	480	390	371	domaine	40	1260	880	66,5
150	143	79		500	400	380	œ	41	1290	900	67
155	147	80	e e e	510	410	390		42	1330	920	67,5
160	152	82	T T	530	420	399	ð	43	1360	940	68
165	156	83	a)	540	430	409	O C	43,5	1400	960	68,5
170	162	85	Non valable	550	440	418	€ VA	44,5	1430	980	69
175	166	86	<u>0</u>	570	450	428	- O-4	45	1470	1000	70
180	171	87	5	580	460	437	75 75	46	1500		
185	176	88	Çen Sem	600	470	447	ō.	47	1540		
190	181	90	O	610	480	456	O	48	1570		
195	185	91	source.	630	490	466	(G	48,5	1610		
200	190	92		650	500	475	Non valable dans	49	1650		
205	195	93		660	510	485	. .	50	1680		
210	199	94		680	520	494	9	50,5	1720		
215	204	95		690	530	504	#	51	1760		
220	209	96		710	540	513		52	1790		
225	214	97		720	550	523		52,5	1830		
230	219	98		740	5 6 0	532		53	1870		
235	223	99		750	570	542		53,5	1910		
240	228	100	20	770	580	551		54	1940		
245	233		21	780	590	561		54,5	1980		
250	238		22	800	600	570	1166945 VVII 1145 Kansiya	55	2020		
255	242		23	820	610	580	4 Jan 1984	56	2060		
260	247		24	830	620	589		56,5	2100		
265	252		. 25	850	630	599		57	2140		
270	257		26	860	640	608		57,5	2180		
275	262		26,5	880	650	618		58	2220	j	

BREVE	ET DE TECHNICI	EN SUPERIEUR – TRAITEMENTS DES MATERIA	XUX
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TN	MSTI AB	Sous-épreuve commune aux deux options – U4.2	Page 9/10

ANNEXE 6

All dil dil dil dil dil	mique B. C N O minique B. C N O Dimension of the Control of the Co		8.9 288,98 297,14 305,91 315,92 N Ga Ge	12 48/10.6 478.85 48/1.21 48/7.3 506. PG	# T # 1851		EU Gd TD DY HO EFFOR SERVER 688.9 696.33 698.93 EPFOR EL TM EVEN EN TAX 152.0 152.1 EFFOR 152.1 EFFOR 152.1 EFFOR EFFOR ENGINE ENGINE ENGINE EFFOR EFFOR ER 152.1 EFFOR	Am Cm Bk Cf Es Fm I
VIII VIII	N		247.43 257.56 258.5 277 Mn Fe Co	4211.5 4312.2 4412.4 45 O TC RU Rh one Texneller Referent Roolen 95.9 79.00 101.1 102.9	Maria 78226 78225 77 Maria Maria		Md Pm Sm Neder Person Servina 1144 Person Servina 1144 Person Servina	on Np
We Va Vla	Masse volumique (g.cm-3)		T 226.1 227.19 T V C	395,49 408,4 4110.2 Zr NB M Zrenten Malum Mayo	13;7 7218,6 7318,3 Hf Ta V Hefilum Temale Turi	KU KAD (xchabe)un (xch	Se7 386.77 59 Lanthanoides Ce Pr	8 F
Perhodas Ia IIa IIIa	A Section 120 Constitution 120 Constitut	0.997 11 1774 12 Na Mg	0.886 1891.555 2003 21	153 972.8 384.47	(S Ba La	Fr Ra Ac Ac 2250 2250 2250 2250	Lanth	Actinoides

BREVET DE TECHNICIEN SUPERIEUR – TRAITEMENTS DES MATERIAUX			
Durée : 2 heures	Coefficient: 2	Sciences et Techniques Industrielles	Session 2006
Code: TMSTI AB		Sous-épreuve commune aux deux options – U4.2	Page 10/10